3157
690
3万
管理员
此处脸部检测的一个简单过程如下: a. 首先使用黑白来表示一个图片,以此简化这个过程(因为我们并不需要颜色数据来检测一个脸部)。b. 然后依次扫描图片上的每一个像素点 。对每个像素点,找到与它直接相邻的像素点。然后找出这个点周围暗度变化的方向。例如下图所示,这个点周围由明到暗的方向为从左下角到右上角,所以它的梯度方向为如下箭头所示c. 在上一个步骤完成后,一个图片里所有的像素点均可由一个对应的梯度表示。这些箭头表示了整个图片里由明到暗的一个趋势。如果我们直接分析这些像素点(也就是按色彩的方式分析),那么那些非常亮的点和非常暗的点,它们的值(RGB值)肯定有非常大的差别。但是因为我们在这只关注明亮度改变的方向,所以有有色图和黑白图最终得到的结果都是一样的,这样可以极大简化问题解决的过程。d. 但是保存所有这些梯度会是一个较为消耗存储的过程,所以我们将整个图片分成多个小方块,并且计算里面有多少不同的梯度。然后我们使用相同梯度最多的方向来表示这个小方块的梯度方向。这样可以将原图片转化为一个非常简单的表现方式,并以一种较简单的方法抓取到面部的基本结构。e. 当计算到一个图片的HOG特征后,可以使用这个特征来对通过训练大量图片得出的HOG特征进行比对。如果相似度超过某个阈值,则认为面部被检测到。
b. 然后依次扫描图片上的每一个像素点 。对每个像素点,找到与它直接相邻的像素点。然后找出这个点周围暗度变化的方向。
例如下图所示,这个点周围由明到暗的方向为从左下角到右上角,所以它的梯度方向为如下箭头所示
c. 在上一个步骤完成后,一个图片里所有的像素点均可由一个对应的梯度表示。这些箭头表示了整个图片里由明到暗的一个趋势。
如果我们直接分析这些像素点(也就是按色彩的方式分析),那么那些非常亮的点和非常暗的点,它们的值(RGB值)肯定有非常大的差别。
但是因为我们在这只关注明亮度改变的方向,所以有有色图和黑白图最终得到的结果都是一样的,这样可以极大简化问题解决的过程。
d. 但是保存所有这些梯度会是一个较为消耗存储的过程,所以我们将整个图片分成多个小方块,并且计算里面有多少不同的梯度。
然后我们使用相同梯度最多的方向来表示这个小方块的梯度方向。这样可以将原图片转化为一个非常简单的表现方式,并以一种较简单的方法抓取到面部的基本结构。
e. 当计算到一个图片的HOG特征后,可以使用这个特征来对通过训练大量图片得出的HOG特征进行比对。如果相似度超过某个阈值,则认为面部被检测到。
举报
本版积分规则 发表回复 回帖后跳转到最后一页
注册账号后积极发帖的会员
经常参与各类话题的讨论,发帖内容较有主见
经常帮助其他会员答疑
积极宣传本站,为本站带来更多注册会员
积极宣传本站,为本站带来更多的用户访问量
经常在论坛发帖,且发帖量较大
长期对论坛的繁荣而不断努力,或多次提出建设性意见
活跃且尽责职守的版主
曾经为论坛做出突出贡献目前已离职的版主
为论坛做出突出贡献的会员
Archiver|小黑屋|童话镇 |网站地图
GMT+8, 2025.2.22 16:54 , Processed in 0.031719 second(s), 4 queries , Gzip On, MemCached On.
Powered by Discuz! X3.5
© 2001-2025 Discuz! Team.