OpenCore

Reference Manual (0.5.5.6)
[2020.03.01]

Copyright ©2018-2020 vit9696

1 Introduction

This document provides information on [OpenCore user configuration file format used to setup the correct functioning
of macOS operating system. It is to be read as the official clarification of expected OpenCore behaviour. All deviations,
if found in published OpenCore releases, shall be considered documentation or implementation bugs, and are requested
to be reported through [Acidanthera Bugtracker. All other sources or translations of this document are unofficial and
may contain errors.

This document is structured as a specification, and is not meant to provide a step by step algorithm for configuring
end-user board support package (BSP). Any third-party articles, tools, books, etc., providing such material are prone
to their authors’ preferences, tastes, this document misinterpretation, and essential obsolescence. In case you still use
these sources, for example, Opencore Vanilla Desktop Guide| (parent link|), please ensure following this document for
every made decision and judging its consequences. Regardless of the sources used you are required to fully understand
every dedicated OpenCore configuration option and concept prior to reporting any issues in |/Acidanthera Bugtracker!

1.1 Generic Terms

e plist — Subset of ASCII Property List format written in XML, also know as XML plist format version
1. Uniform Type Identifier (UTI): com.apple.property-list. Plists consist of plist objects, which are
combined to form a hierarchical structure. Due to plist format not being well-defined, all the definitions of this
document may only be applied after plist is considered valid by running plutil -lint. External references:
https://www.apple.com/DTDs/PropertyList-1.0.dtd, man plutil.

o plist type — plist collections (plist array, plist dictionary, plist key) and primitives (plist string,
plist data, plist date, plist boolean, plist integer, plist real).

e plist object — definite realisation of plist type, which may be interpreted as value.
e plist array — array-like collection, conforms to array. Consists of zero or more plist objects.

o plist dictionary — map-like (associative array) collection, conforms to dict. Consists of zero or more plist
keys.

e plist key — contains one plist object going by the name of plist key, conforms to key. Consists of
printable 7-bit ASCII characters.

e plist string — printable 7-bit ASCII string, conforms to string.

e plist data — base64-encoded blob, conforms to data.

e plist date — ISO-8601 date, conforms to date, unsupported.

o plist boolean — logical state object, which is either true (1) or false (0), conforms to true and false.

e plist integer — possibly signed integer number in base 10, conforms to integer. Fits in 64-bit unsigned integer
in two’s complement representation, unless a smaller signed or unsigned integral type is explicitly mentioned in
specific plist object description.

e plist real — floating point number, conforms to real, unsupported.

e plist metadata — value cast to data by the implementation. Permits passing plist string, in which case
the result is represented by a null-terminated sequence of bytes (aka C string), plist integer, in which case
the result is represented by 32-bit little endian sequence of bytes in two’s complement representation, plist
boolean, in which case the value is one byte: 01 for true and 00 for false, and plist data itself. All other
types or larger integers invoke undefined behaviour.

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker
https://khronokernel-2.gitbook.io/opencore-vanilla-desktop-guide
https://khronokernel-1.gitbook.io/getting-started-with-opencore
https://github.com/acidanthera/bugtracker

3 Setup

3.1 Directory Structure

 Tool.efi

Figure 1. Directory Structure

When directory boot is used the directory structure used should follow the description on [Directory Structure| figure.
Available entries include:

o BOOTx64.efi
Initial booter, which loads OpenCore.efi unless it was already started as a driver.
e ACPI
Directory used for storing supplemental ACPI information for ACPI section.
e Drivers
Directory used for storing supplemental UEFI drivers for section.
o Kexts
Directory used for storing supplemental kernel information for Kernel section.

¢ Resources
Directory used for storing media resources, such as audio files for screen reader support. See
[Properties|section for more details.
e Tools
Directory used for storing supplemental tools.
e OpenCore.efi
Main booter driver responsible for operating system loading.
e vault.plist
Hashes for all files potentially loadable by 0C Config.
e config.plist
0C Config.
e vault.sig
Signature for vault.plist.
e nvram.plist
OpenCore variable import file.
e opencore-YYYY-MM-DD-HHMMSS. txt
OpenCore log file.

3.2 Installation and Upgrade

To install OpenCore reflect the Configuration Structure described in the previous section on a EFI volume of a GPT
partition. While corresponding sections of this document do provide some information in regards to external resources
like ACPI tables, UEFI drivers, or kernel extensions (kexts), completeness of the matter is out of the scope of this
document. Information about kernel extensions may be found in a separate [Kext List| document available in OpenCore
repository. Vaulting information is provided in Security Properties section of this document.

0C config, just like any property lists can be edited with any stock textual editor (e.g. nano, vim), but specialised
software may provide better experience. On macOS the preferred GUI application is Xcode. For a lightweight
cross-platform and open-source alternative ProperTree editor can be utilised.

For BIOS booting a third-party UEFI environment provider will have to be used. DuetPkg is one of the known UEFI
environment providers for legacy systems. To run OpenCore on such a legacy system you can install DuetPkg with a
dedicated tool: BootInstall.

For upgrade purposes refer to Differences.pdf document, providing the information about the changes affecting
the configuration compared to the previous release, and Changelog.md document, containing the list of modifications
across all published updates.

3.3 Contribution

OpenCore can be compiled as an ordinary EDK II. Since UDK] development was abandoned by TianoCore, OpenCore
requires the use of EDK II Stable. Currently supported EDK II release (potentially with patches enhancing the
experience) is hosted in acidanthera/audk.

The only officially supported toolchain is XCODE5. Other toolchains might work, but are neither supported, nor
recommended. Contribution of clean patches is welcome. Please do follow EDK II C Codestyle.

Required external package dependencies include ;+and-EfiPkg and MacInfoPkg,

To compile with XCODE5, besides Xcode, one should also install NASM and MTOC. The latest Xcode version is
recommended for use despite the toolchain name. Example command sequence may look as follows:

git clone https://github.com/acidanthera/audk UDK

cd UDK

git clone https://github.com/acidanthera/EfiPkg

git clone https://github.com/acidanthera/MacInfoPkg

git clone https://github.com/acidanthera/OpenCorePkg

source edksetup.sh

make -C BaseTools

build -a X64 -b RELEASE -t XCODE5 -p OpenCorePkg/OpenCorePkg.dsc

https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Kexts.md
https://developer.apple.com/xcode
https://github.com/corpnewt/ProperTree
https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/BootInstall
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://github.com/tianocore/tianocore.github.io/wiki/UDK
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II#stable-tags
https://github.com/acidanthera/audk
https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://github.com/acidanthera/EfiPkg
https://github.com/acidanthera/MacInfoPkg
https://developer.apple.com/xcode
https://www.nasm.us
https://github.com/acidanthera/ocbuild/raw/master/external/mtoc-mac64.zip

Listing 1: Compilation Commands

For IDE usage Xcode projects are available in the root of the repositories. Another approach could be Sublime Text
with [EasyClangComplete plugin. Add .clang_complete file with similar content to your UDK root:

-I/UefiPackages/MdePkg
-I/UefiPackages/MdePkg/Include
-I/UefiPackages/MdePkg/Include/X64

-I/UefiPackages/MdeModulePk
-I1/UefiPackages/MdeModulePkg/Include

-I/UefiPackages/MdeModulePkg/Include/X64
-I/UefiPackages/EfiPkg

-I/UefiPackages/EfiPkg/Include
-I/UefiPackages/EfiPkg/Include/X64
-I/UefiPackages/AppleSupportPkg/Include
-I/UefiPackages/0OpenCorePkg/Include
T/ JefiPackages/OcSupportPkg/Include
-I/UefiPackages/MacInfoPkg/Include
-I/UefiPackages/UefiCpuPkg/Include
—-IInclude

-include

/Uef iPackages/MdePkg/Include/Uefi.h
-fshort-wchar

-Wall

-Wextra

-Wno-unused-parameter
-Wno-missing-braces
-Wno-missing-field-initializers
-Wno-tautological-compare
-Wno-sign-compare

-Wno-varargs
-Wno-unused-const-variable
-DOC_TARGET_NOOPT=1

Listing 2: ECC Configuration

Warning: Tool developers modifying config.plist or any other OpenCore files must ensure that their tool checks
for opencore-version NVRAM variable (see [Debug Properties| section below) and warn the user if the version listed
is unsupported or prerelease. OpenCore configuration may change across the releases and the tool shall ensure that it
carefully follows this document. Failure to do so may result in this tool to be considered as malware and blocked with
all possible means.

3.4 Coding conventions

Just like any other project we have conventions that we follow during the development. All third-party contributors are
highly recommended to read and follow the conventions listed below before submitting their patches. In general it is
also recommended to firstly discuss the issue in |Acidanthera Bugtracker before sending the patch to ensure no double
work and to avoid your patch being rejected.

Organisation. The codebase is structured in multiple repositories which contain separate EDK II packages.
AppleSupportPkg and OpenCorePkg are primary packages, and EfiPkg, 8eSupportPkeMacInfoPkg.dsc) are de-
pendent packages.

e Whenever changes are required in multiple repositories, separate pull requests should be sent to each.

e Committing the changes should happen firstly to dependent repositories, secondly to primary repositories to
avoid automatic build errors.

e Each unique commit should compile with XCODE5 and preferably with other toolchains. In the majority of the
cases it can be checked by accessing the |CI interface. Ensuring that static analysis finds no warnings is preferred.

https://www.sublimetext.com
https://niosus.github.io/EasyClangComplete
https://github.com/acidanthera/bugtracker
https://travis-ci.com/acidanthera

5 Booter

5.1 Introduction

This section allows to apply different kinds of UEFI modifications on Apple bootloader (boot.efi). The modifications
currently provide various patches and environment alterations for different firmwares. Some of these features were
originally implemented as a part of AptioMemoryFix.efi, which is no longer maintained. See [Iips and Tricks| section
for migration steps.

If you are using this for the first time on a customised firmware, there is a list of checks to do first. Prior to starting
please ensure that you have:

o Most up-to-date UEFI firmware (check your motherboard vendor website).

e Fast Boot and Hardware Fast Boot disabled in firmware settings if present.

e Above 4G Decoding or similar enabled in firmware settings if present. Note, that on some motherboards (notably
ASUS WS-X299-PRO) this option causes adverse effects, and must be disabled. While no other motherboards
with the same issue are known, consider this option to be first to check if you have erratic boot failures.

e DisableIoMapper quirk enabled, or VT-d disabled in firmware settings if present, or ACPI DMAR table dropped.

e No ‘slide’ boot argument present in NVRAM or anywhere else. It is not necessary unless you cannot boot at all
or see No slide values are usable! Use custom slide! message in the log.

e CFG Lock (MSR 0xE2 write protection) disabled in firmware settings if present. Cconsider patching it|if you have
enough skills and no option is available. See nets-VerifyMsrE2 notes for more details.

e CSM (Compatibility Support Module) disabled in firmware settings if present. You may need to flash GOP ROM
on NVIDIA 6xx/AMD 2xx or older. Use |GopUpdate (see the second post) or AMD UEFI GOP MAKER in case
you are not sure how.

e EHCI/XHCI Hand-off enabled in firmware settings only if boot stalls unless USB devices are disconnected.

o VT-x, Hyper Threading, Execute Disable Bit enabled in firmware settings if present.

e While it may not be required, sometimes you have to disable Thunderbolt support, Intel SGX, and Intel
Platform Trust in firmware settings present.

When debugging sleep issues you may want to (temporarily) disable Power Nap and automatic power off, which appear
to sometimes cause wake to black screen or boot loop issues on older platforms. The particular issues may vary, but in
general you should check ACPI tables first. Here is an example of a bug found in some Z68 motherboards. To turn
Power Nap and the others off run the following commands in Terminal:

sudo pmset autopoweroff O
sudo pmset powernap O
sudo pmset standby O

Note: These settings may reset at hardware change and in certain other circumstances. To view their current state use
pmset -g command in Terminal.

5.2 Properties

1. MmioWhitelist
Type: plist array
Description: Designed to be filled with plist dict values, describing addresses critical for particular firmware
functioning when DevirtualiseMmio quirk is in use. See |MmioWhitelist Properties|section below.

2. Quirks
Type: plist dict
Description: Apply individual booter quirks described in Quirks Properties section below.

5.3 MmioWhitelist Properties

1. Address
Type: plist integer
Failsafe: 0
Description: Exceptional MMIO address, which memory descriptor should be left virtualised (unchanged) by

14

https://github.com/acidanthera/AptioFixPkg
https://github.com/LongSoft/UEFITool/blob/master/UEFIPatch/patches.txt
https://www.win-raid.com/t892f16-AMD-and-Nvidia-GOP-update-No-requests-DIY.html
http://www.insanelymac.com/forum/topic/299614-asus-eah6450-video-bios-uefi-gop-upgrade-and-gop-uefi-binary-in-efi-for-many-ati-cards/page-1#entry2042163
http://www.insanelymac.com/forum/topic/329624-need-cmos-reset-after-sleep-only-after-login/#entry2534645

10.

DiscardHibernateMap

Type: plist boolean

Failsafe: false

Description: Reuse original hibernate memory map.

This option forces XNU kernel to ignore newly supplied memory map and assume that it did not change after
waking from hibernation. This behaviour is required to work by Windows, which mandates to preserve runtime
memory size and location after S4 wake.

Note: This may be used to workaround buggy memory maps on older hardware, and is now considered rare legacy.
Examples of such hardware are Ivy Bridge laptops with Insyde firmware, like Acer V3-571G. Do not use this
unless you fully understand the consequences.

EnableSafeModeSlide

Type: plist boolean

Failsafe: false

Description: Patch bootloader to have KASLR enabled in safe mode.

This option is relevant to the users that have issues booting to safe mode (e.g. by holding shift or using -x boot
argument). By default safe mode forces 0 slide as if the system was launched with s1ide=0 boot argument. This
quirk tries to patch boot.efi to lift that limitation and let some other value (from 1 to 255) be used. This quirk
requires ProvideCustomSlide to be enabled.

Note: The necessity of this quirk is determined by safe mode availability. If booting to safe mode fails, this option
can be tried to be enabled.

EnableWriteUnprotector

Type: plist boolean

Failsafe: false

Description: Permit write access to UEFI runtime services code.

This option bypasses R permissions in code pages of UEFI runtime services by removing write protection (WP)
bit from CRO register during their execution. This quirk requires 0C_FIRMWARE_RUNTIME protocol implemented in
FwRuntimeServices.efi.

Note: The necessity of this quirk is determined by early boot crashes of the firmware.

ForceExitBootServices

Type: plist boolean

Failsafe: false

Description: Retry ExitBootServices with new memory map on failure.

Try to ensure that ExitBootServices call succeeds even with outdated MemoryMap key argument by obtaining
current memory map and retrying ExitBootServices call.

Note: The necessity of this quirk is determined by early boot crashes of the firmware. Do not use this unless you
fully understand the consequences.

ProtectCsmRegion

Type: plist boolean

Failsafe: false

Description: Protect CSM region areas from relocation.

Ensure that CSM memory regions are marked as ACPI NVS to prevent boot.efi or XNU from relocating or using
them.

Note: The necessity of this quirk is determined by artifacts and sleep wake issues. As AvoidRuntimeDefrag
resolves a similar problem, no known firmwares should need this quirk. Do not use this unless you fully understand
the consequences.

ProtectSecureBoot

Type: plist boolean

Description: Protect UEFI Secure Boot variables from being written.

16

https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-uefi#hibernation-state-s4-transition-requirements

Reports security violation during attempts to write to db, dbx, PK, and KEK variables from the operating system.

Note: This quirk mainly attempts to avoid issues with NVRAM implementations with problematic defragmentation
such as select Insyde or MacPro5, 1.

11. ProvideCustomSlide
Type: plist boolean
Failsafe: false
Description: Provide custom KASLR slide on low memory.

This option performs memory map analysis of your firmware and checks whether all slides (from 1 to 255) can be
used. As boot.efi generates this value randomly with rdrand or pseudo randomly rdtsc, there is a chance of
boot failure when it chooses a conflicting slide. In case potential conflicts exist, this option forces macOS to use a
pseudo random value among the available ones. This also ensures that slide= argument is never passed to the
operating system for security reasons.

Note: The necessity of this quirk is determined by 0CABC: Only N/256 slide values are usable! message
in the debug log. If the message is present, this option is to be enabled.

12. SetupVirtualMap
Type: plist boolean
Failsafe: false
Description: Setup virtual memory at SetVirtualAddresses.

Select firmwares access memory by virtual addresses after SetVirtualAddresses call, which results in early boot
crashes. This quirk workarounds the problem by performing early boot identity mapping of assigned virtual
addresses to physical memory.

Note: The necessity of this quirk is determined by early boot failures. Currently new firmwares with memor
rotection support (like OVMF) do not support this quirk due to acidanthera/bugtracker#719.

13. ShrinkMemoryMap
Type: plist boolean
Failsafe: false
Description: Attempt to join similar memory map entries.

Select firmwares have very large memory maps, which do not fit Apple kernel, permitting up to 64 slots for
runtime memory. This quirk attempts to unify contiguous slots of similar types to prevent boot failures.

Note: The necessity of this quirk is determined by early boot failures. It is rare to need this quirk on Haswell or
newer. Do not use unless you fully understand the consequences.

14. SignalApple0S
Type: plist boolean
Failsafe: false
Description: Report macOS being loaded through OS Info for any OS.

This quirk is useful on Mac firmwares, which behave differently in different OS. For example, it is supposed to
enable Intel GPU in Windows and Linux in some dual-GPU MacBook models.

17

https://github.com/acidanthera/bugtracker/issues/719

8

8.1

Misc

Introduction

This section contains miscellaneous configuration entries for OpenCore behaviour that does not go to any other sections

8.2

1.

8.3

Properties

Boot
Type: plist dict
Description: Apply boot configuration described in section below.

BlessOverride
Type: plist array
Description: Add custom scanning paths through bless model.

Designed to be filled with plist string entries containing absolute UEFT paths to customised bootloaders, for
example, \EFI\Microsoft\Boot\bootmgfw.efi for Microsoft bootloader. This allows unusual boot paths to be
automaticlly discovered by the boot picker. Designwise they are equivalent to predefined blessed path, such as
\System\Library\CoreServices\boot.efi, but unlike predefined bless paths they have highest priority.

Debug
Type: plist dict
Description: Apply debug configuration described in [Debug Properties| section below.

Entries
Type: plist array
Description: Add boot entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See [Entry Properties| section below.

Security

Type: plist dict

Description: Apply security configuration described in Security Properties section below.
Tools

Type: plist array
Description: Add tool entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See [Entry Properties| section below.

Note: Select tools, for example, UEFI Shell are very dangerous and MUST NOT appear in production
configurations, especially in vaulted ones and protected with secure boot, as they may be used to easily bypass
secure boot chain.

Boot Properties

. BuiltinTextRendererHibernateMode

Type: plist boeleanstring
Failsafe: falseNone
Description: ‘

are supported:

~—Hibernation detection mode. The following modes

e None — Avoid hibernation for your own good.
. Geﬁse}eBehaﬁeﬂfE}sAuto —Geﬂse}eBeha%&eufUi—Gense}eGeﬁ%re}—aﬁé—}gnere%aﬂ%}nG%aph%es eptiens-
—Use RTC and NVRAM detection.

26

https://github.com/acidanthera/OpenCoreShell

E GraphicsRIC and builtin € Tec] d Bilite .
NG%@—S@H}&M&W@V@M

bHequﬁed—fePJeheﬂmimdevvwvvtggggyw

2. ConsoleModeHideAuxiliary
Type: plist stringboolean
Failsafe: Emptystringfalse
Description: Sets-console-output-mode-asspeeified-with-the-Hides auxiliary entries from picker menu by default.

An entry is considered auxiliary when at least one of the following applies:

¢ Entry is macOS recovery.
o Entry is explicitly marked as WxHAuxiliary.
o Entry is system (e.g. 86x24Clean NVRAM)

Se%%e%ax%e%%y%@%e%&rges&—avaﬂab}eeeﬂse}e—mede.

To see all entries picker menu needs to be reloaded in extended mode by pressing Spacebar key. Hiding auxiliar
entries may increase boot performance for multidisk systems.

3. HideSelf

Type: plist boolean

Description: Hides own boot entry from boot picker. This may potentially hide other entries, for instance
when another UEFT OS is installed on the same volume and driver boot is used.
4. ConsoleBehaviourOsPickerAttributes

Type: plist stringinteger
Fallsafe Efﬁp%yLS%P}Hg\N

Bulltm icker supports colour arguments as a sum of foreground and background colors

accordin to UEFT s ec1ﬁcat10n The value of black back round and black fore round Geﬁse}eBehmeufasO)

o Empty-string-0x00 — De-net-medify—eonsele-eontrol-mode—EFL_BLACK

o TFext0x01 —SWH}—GH%G%(%XE—H&O&%EFI BLUE

o Graphies0x02 —SW%WEFI GREEN

. Feree?eae*erOC% — SW&%%QMM&%H&&QS@W@%—&Q@HQ&QG&S@%%MEFI CYAN }—

. 0x04 xtroLEF]_RED J—

bdwwmﬁw@%&ﬁ%%%@mﬁﬁmwm

27

for-details—

o Aute0x0C — Use REC-and NVRAM detection—EFI_LIGHTRED
« RTCOX0D — Use RPC-deteetion—EFT_LIGHTMAGENTA
o NVRAMOXOE — Use NVRAM detection—EFI_YELLOW
- 0xOF _ EFT WHITE

+ 0x00 — EFT_BACKGROUND_BLACK

» 0x10 — EFT_BACKGROUND_BLUE

» 0x20 — EFI_BACKGROUND_GREEN

» 0x30 — EFI_BACKGROUND_CYAN

+ 0x40 — EFI_BACKGROUND_RED

» 0x50 — EFI_BACKGROUND_MAGENTA

» 0x60 — EFT_BACKGROUND_BROWN.

+ 0x70 — EFI_BACKGROUND_LIGHTGRAY

Note: This option may not work well with System text renderer. Setting a background different from black could
help testing proper GOP functioning.

Type: plist boolean

Failsafe: false

Description: Hides—eow 7 icker. i oy ntiallyhide-other—entries;

—FEmnable screen reader by default

in boot picker.

For macOS bootloader screen reader preference is set in preferences.efires archive in isVOEnabled.int32
file and is controlled by the operating system. For OpenCore screen reader support this option is an independent
equivalent. Toggling screen reader support in both OpenCore boot picker and macOS bootloader FileVault 2
login window can also be done with Command + F5 key combination.

Note: screen reader requires working audio support, see [UEFI Audio Properties|section for more details.

. PollAppleHotKeys

Type: plist boolean

Failsafe: false

Description: Enable modifier hotkey handling in boot picker.

In addition to action hotkeys, which are partially described in UsePickerPickerMode section and are normally
handled by Apple BDS, there exist modifier keys, which are handled by operating system bootloader, namely
boot.efi. These keys allow to change operating system behaviour by providing different boot modes.

On some firmwares it may be problematic to use modifier keys due to driver incompatibilities. To workaround
this problem this option allows registering select hotkeys in a more permissive manner from within boot picker.
Such extensions include the support of tapping on keys in addition to holding and pressing Shift along with
other keys instead of just Shift alone, which is not detectible on many PS/2 keyboards. This list of known
modifier hotkeys includes:

e CMD+C+MINUS — disable board compatibility checking.

e CMD+K — boot release kernel, similar to kcsuffix=release.
e CMD+S — single user mode.

e CMD+S+MINUS — disable KASLR slide, requires disabled SIP.
e CMD+V — verbose mode.

e Shift — safe mode.

28

10.

11.

ShowPicker

Type: plist boolean

Failsafe: false

Description: Show simple boot picker to allow boot entry selection.

TakeoffDelay

Type: plist integer, 32 bit

Failsafe: 0

Description: Delay in microseconds performed before handling picker startup and action hotkeys.

Introducing a delay may give extra time to hold the right action hotkey sequence to e.g. boot to recovery mode.
On some platforms setting this option to at least 5000-10000 microseconds may be necessary to access action
hotkeys at all due to the nature of the keyboard driver.

Timeout

Type: plist integer, 32 bit

Failsafe: 0

Description: Timeout in seconds in boot picker before automatic booting of the default boot entry. Use 0 to
disable timer.

Type: plist beoleanstring
Failsafe: falseBuiltin
Description: Use-OpenCeore-built-in-boot-pieker-Choose boot picker used for boot management.

Picker describes underlying boot management with an optional user interface responsible for handling boot
options. The following values are supported:

o UsePickerBuiltin setto—— boot management is handled by OpenCore, a simple text only user interface
is_used.

o falseentirely disables—External — an external boot management protocol is used if available. Otherwise
Builtin mode is used.
o Apple — Apple boot management is used if available. Otherwise Builtin mode is used.

Upon success External mode will entirely disable all boot management in OpenCore except policy enforcement.

In thisease-Apple mode it may additionally bypass polic enforcement To implement External mode a custom
user interface may utilise (OpenCorePkg OcBootManagementLib Z > sself.

Reference example of external graphics interface is provided in ExternalUl test dr1ver

OpenCore built-in boot picker contains a set of actions chosen during the boot process. The list of supported
actions is similar to Apple BDS and in general can be accessed by holding action hotkeys during boot process.
Currently the following actions are considered:

e Default — this is the default option, and it lets OpenCore built-in boot picker to loads the default boot
option as specified in [Startup Diskl preference pane.

e ShowPicker — this option forces picker to show. Normally it can be achieved by holding OPT key during
boot. Setting ShowPicker to true will make ShowPicker the default option.

e ResetNvram — this option performs select UEFI variable erase and is normally achieved by holding
CMD+0OPT+P+R key combination during boot. Another way to erase UEFI variables is to choose Reset NVRAM
in the picker. This option requires AllowNvramReset to be set to true.

e BootApple — this options performs booting to the first found Apple operating system unless the default
chosen operating system is already made by Apple. Hold X key to choose this option.

e BootAppleRecovery — this option performs booting to Apple operating system recovery. Either the one
related to the default chosen operating system, or first found in case default chosen operating system is not
made by Apple or has no recovery. Hold CMD+R key combination to choose this option.

29

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg/tree/master/Tests/ExternalUi
https://support.apple.com/HT202796

Note 1: Activated KeySupport, AppleUsbKbDxe, or similar driver is required for key handling to work. On many
firmwares it is not possible to get all the keys function.

Note 2: In addition to OPT OpenCore supports Escape key to display picker when ShowPicker is disabled. This
key exists for Apple picker mode and for firmwares with PS/2 keyboards that fail to report held OPT key and
require continual presses of Escape key to enter the boot menu.

Note 3: On Macs with problematic GOP it may be difficult to access Apple BootPicker. To workaround this
roblem even without loading OpenCore BootKicker utility can be blessed.

Debug Properties

1. DisableWatchDog

Type: plist boolean

Failsafe: false

Description: Select firmwares may not succeed in quickly booting the operating system, especially in debug
mode, which results in watch dog timer aborting the process. This option turns off watch dog timer.

. DisplayDelay

Type: plist integer
Failsafe: 0
Description: Delay in microseconds performed after every printed line visible onscreen (i.e. console).

DisplayLevel

Type: plist integer, 64 bit

Failsafe: 0

Description: EDK II debug level bitmask (sum) showed onscreen. Unless Target enables console (onscreen)
printing, onscreen debug output will not be visible. The following levels are supported (discover more in
DebugLib.h):

+ 0x00000002 (bit 1) — DEBUG_WARN in DEBUG, NOOPT, RELEASE.

+ 0x00000040 (bit 6) — DEBUG_INFO in DEBUG, NOOPT.

+ 0x00400000 (bit 22) — DEBUG_VERBOSE in custom builds.

+ 0x80000000 (bit 31) — DEBUG_ERROR in DEBUG, NOOPT, RELEASE.

Target

Type: plist integer

Failsafe: 0

Description: A bitmask (sum) of enabled logging targets. By default all the logging output is hidden, so this
option is required to be set when debugging is necessary.

The following logging targets are supported:

e 0x01 (bit 0) — Enable logging, otherwise all log is discarded.
e 0x02 (bit 1) — Enable basic console (onscreen) logging.

o 0x04 (bit 2) — Enable logging to Data Hub.

o 0x08 (bit 3) — Enable serial port logging.

e 0x10 (bit 4) — Enable UEFI variable logging.

e 0x20 (bit 5) — Enable non-volatile UEFI variable logging.

o 0x40 (bit 6) — Enable logging to file.

Console logging prints less than all the other variants. Depending on the build type (RELEASE, DEBUG, or NOOPT)
different amount of logging may be read (from least to most).

Data Hub log will not log kernel and kext patches. To obtain Data Hub log use the following command in macOS:

ioreg -1w0 -p IODeviceTree | grep boot-log | sort | sed 's/.*<\(.*\)>.*/\1/' | xxd -r -p

UEFT variable log does not include some messages and has no performance data. For safety reasons log size is
limited to 32 kilobytes. Some firmwares may truncate it much earlier or drop completely if they have no memory.
Using non-volatile flag will write the log to NVRAM flash after every printed line. To obtain UEFT variable log
use the following command in macOS:

30

https://github.com/tianocore/edk2/blob/UDK2018/MdePkg/Include/Library/DebugLib.h

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0opencore-version

To obtain OEM information use the following commands in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0em-product # SMBIOS Typel ProductName
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0em-vendor # SMBIOS Type2 Manufacturer
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0em-board # SMBIOS Type2 ProductName

. HaltLevel

Type: plist integer, 64 bit

Failsafe: 0x80000000 (DEBUG_ERROR)

Description: EDK IT debug level bitmask (sum) causing CPU to halt (stop execution) after obtaining a message
of HaltLevel. Possible values match DisplayLevel values.

. RequireSignatureVault
Type: plist boeleanstring
Failsafe: trueSecure

Description: qu&'rfeEnables vaulting mechanism in OpenCore.

Valid values:

+ Optional —_ require nothing, no vault is enforced, insecure.

* Basic _ requirevault.plist file present in 0C directory. This provides basic filesystem integrity verification
and may protect from unintentional filesystem corruption.

e Secure — require vault.sig signature file for vault.plist in OC directory.

This-This includes Basic integrity checking but also attempts to build a trusted bootchain.
vault.plist file should contain SHA-256 hashes for all files used by OpenCore. Presence of this file is highl
recommended to ensure that unintentional file modifications (including filesystem corruption) do not happen
unnoticed. To create this file automatically use create_vault.sh|script. Regardless of the underlying filesystem,

ath name and case must match between config.plist and vault.plist.

vault.sig file should contain a raw 256 byte RSA-2048 signature from SHA-256 hash of vault.plist. The
signature is verified against the public key embedded into OpenCore.efi.

To embed the public key you should do either of the following:

¢ Provide public key during the OpenCore.efi compilation in OpenCoreVault.c file.
e Binary patch OpenCore.efi replacing zeroes with the public key between =BEGIN 0C VAULT= and ==END
0C VAULT== ASCII markers.

RSA public key 520 byte format description can be found in Chromium OS documentation. To convert public
key from X.509 certificate or from PEM file use RsaTool.

The complete set of commands to:

o Create vault.plist.

32

https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/CreateVault
https://github.com/acidanthera/OpenCorePkg/blob/master/Platform/OpenCore/OpenCoreVault.c
https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/CreateVault

o Create a new RSA key (always do this to avoid loading old configuration).
e Embed RSA key into OpenCore.efi.
o Create vault.sig.

Can look as follows:

cd /Volumes/EFI/EFI/OC

/path/to/create_vault.sh .

/path/to/RsaTool -sign vault.plist vault.sig vault.pub

off=$(($(strings -a -t d OpenCore.efi | grep "=BEGIN OC VAULT=" | cut -f1 -d' ')+16))
dd of=0OpenCore.efi if=vault.pub bs=1 seek=$0ff count=528 conv=notrunc

rm vault.pub

Note 1: While it may appear obvious, but you have to use an external method to verify OpenCore.efi and
BOOTx64.efi for secure boot path. For this you are recommended to at least enable UEFI SecureBoot with a
custom certificate, and sign OpenCore.efi and BOOTx64.efi with your custom key. More details on customising
secure boot on modern firmwares can be found in Taming UEFI SecureBoot paper (in Russian).

Note 2: vault.plist and vault.sig are used regardless of this option when vault.plist is present or public
key is embedded into OpenCore.efi. Setting this option will only ensure configuration sanity, and abort the
boot process otherwise.

. ScanPolicy

Type: plist integer, 32 bit

Failsafe: 0xF0103

Description: Define operating system detection policy.

This value allows to prevent scanning (and booting) from untrusted source based on a bitmask (sum) of select
flags. As it is not possible to reliably detect every file system or device type, this feature cannot be fully relied
upon in open environments, and the additional measures are to be applied.

Third party drivers may introduce additional security (and performance) measures following the provided scan
policy. Scan policy is exposed in scan-policy variable of 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 GUID for
UEFI Boot Services only.

e 0x00000001 (bit 0) — OC_SCAN_FILE_SYSTEM_LOCK, restricts scanning to only known file systems defined as
a part of this policy. File system drivers may not be aware of this policy, and to avoid mounting of undesired
file systems it is best not to load its driver. This bit does not affect dmg mounting, which may have any file
system. Known file systems are prefixed with 0C_SCAN_ALLOW_FS_.

e 0x00000002 (bit 1) — OC_SCAN_DEVICE_LOCK, restricts scanning to only known device types defined as a
part of this policy. This is not always possible to detect protocol tunneling, so be aware that on some
systems it may be possible for e.g. USB HDDs to be recognised as SATA. Cases like this must be reported.
Known device types are prefixed with 0C_SCAN_ALLOW_DEVICE_.

e 0x00000100 (bit 8) — OC_SCAN_ALLOW_FS_APFS, allows scanning of APFS file system.

e 0x00000200 (bit 9) — OC_SCAN_ALLOW_FS_HFS, allows scanning of HFS file system.

e 0x00000400 (bit 10) — OC_SCAN_ALLOW_FS_ESP, allows scanning of EFI System Partition file system.

e 0x00000800 (bit 11) — 0C_SCAN_ALLOW_FS_NTFS, allows scanning of NTFS (Msft Basic Data) file system.

e 0x00001000 (bit 12) — 0C_SCAN_ALLOW_FS_EXT, allows scanning of EXT (Linux Root) file system.

e 0x00010000 (bit 16)44*OC_SCAN_ALLDW_DEVICE_SATA,aHOWZScannhugSAEDA,deVKBS

e 0x00020000 (bit 17) — 0C_SCAN_ALLOW_DEVICE_SASEX, allow scanning SAS and Mac NVMe devices.

e 0x00040000 (bit 18) — 0C_SCAN_ALLOW_DEVICE_SCSI, allow scanning SCSI devices.

. OXOOOSOOOO(bH}19)47DC_SCAN_ALLDW_DEVICE_NVME,aﬂowISmnnﬁng]VVﬁﬁedevme&

¢ 0x00100000 (bit 20) — OC_SCAN_ALLOW_DEVICE_ATAPI, allow scanning CD/DVD devices.

¢ 0x00200000 (bit 21) — O0C_SCAN_ALLOW_DEVICE_USB, allow scanning USB devices.

e 0x00400000 (bit 22) — 0C_SCAN_ALLOW_DEVICE_FIREWIRE, allow scanning FireWire devices.

e 0x00800000 (bit 23) — 0C_SCAN_ALLOW_DEVICE_SDCARD, allow scanning card reader devices.

Note: Given the above description, 0xF0103 value is expected to allow scanning of SATA, SAS, SCSI, and NVMe
devices with APFS file system, and prevent scanning of any devices with HF'S or FAT32 file systems in addition
to not scanning APFS file systems on USB, CD, and FireWire drives. The combination reads as:

o OC_SCAN FILE_SYSTEM_ LOCK

33

https://habr.com/post/273497/

8.6

1.

« 0C_SCAN_DEVICE_LOCK
o OC_SCAN_ALLOW_FS_APFS

o OC_SCAN_ALLOW_DEVICE_SATA
o OC_SCAN_ALLOW_DEVICE_SASEX
o 0C_SCAN_ALLOW_DEVICE_SCSI
e OC_SCAN_ALLOW_DEVICE_NVME

Entry Properties

Arguments

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used as boot arguments (load options) of the specified entry.

Auxiliary
Type: plist boolean

Description: This entry will not be listed by default when HideAuxiliary is set to true.

Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Enabled

Type: plist boolean

Failsafe: false

Description: This entry will not be listed unless set to true.

Name

Type: plist string

Failsafe: Empty string

Description: Human readable entry name displayed in boot picker.

Path

Type: plist string

Failsafe: Empty string

Description: Entry location depending on entry type.

e Entries specify external boot options, and therefore take device paths in Path key. These values are not
checked, thus be extremely careful. Example: PciRoot (0x0) /Pci(0x1,0x1)/.../\EFI\COOL.EFI

e Tools specify internal boot options, which are part of bootloader vault, and therefore take file paths relative
to 0C/Tools directory. Example: Shell.efi.

34

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask
Combined FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask. Present on newer Macs to avoid
extra parsing of SMBIOS tables.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_BID
Hardware BoardProduct (e.g. Mac-35C1E88140C3E6CF). Not present on real Macs, but used to avoid extra
parsing of SMBIOS tables, especially in boot.efi.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_MLB
Hardware BoardSerialNumber. Override for MLB. Present on newer Macs (2013+ at least).

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_ROM
Hardware ROM. Override for ROM. Present on newer Macs (2013+ at least).

e 7C436110-AB2A-4BBB-A880-FE41995C9F82:prev-lang:kbd
ASCII string defining default keyboard layout. Format is 1ang-COUNTRY : keyboard, e.g. ru-RU:252 for Russian
locale and ABC keyboard. Also accepts short forms: ru:252 or ru:0 (U.S. keyboard, compatible with 10.9). Full
decoded keyboard list from AppleKeyboardLayouts-L.dat can be found here. Using non-latin keyboard on 10.14
will not enable ABC keyboard, unlike previous and subsequent macOS versions, and is thus not recommended in
case you need 10.14.

e 7C436110-AB2A-4BBB-A880-FE41995C9F82:security-mode
ASCII string defining FireWire security mode. Legacy, can be found in IOFireWireFamily source code in
[IOFireWireController.cppl It is recommended not to set this variable, which may speedup system startup. Setting
to full is equivalent to not setting the variable and none disables FireWire security.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:UIScale
One-byte data defining boot.efi user interface scaling. Should be 01 for normal screens and 02 for HiDPI
screens.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:DefaultBackgroundColor
Four-byte RGBA data defining boot.efi user interface background colour. Standard colours include BF BF BF
00 (Light Gray) and 00 00 00 00 (Syrah Black). Other colours may be set at user’s preference.

9.5 Other Variables
The following variables may be useful for certain configurations or troubleshooting:

e 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args
Kernel arguments, used to pass configuration to Apple kernel and drivers. There are many arguments, which
may be found by looking for the use of PE_parse_boot_argn function in the kernel or driver code. Some of the
known boot arguments include:
— acpi_layer=0xFFFFFFFF
— acpi_level=0xFFFF5F (implies ACPI_ALL_COMPONENTS)
— batman=VALUE (AppleSmartBatteryManager debug mask)
— batman-nosmc=1 (disable AppleSmartBatteryManager SMC interface)
— cpus=VALUE (maximum number of CPUs used)
— debug=VALUE (debug mask)
— 10=VALUE (I0Kit debug mask)
— keepsyms=1 (show panic log debug symbols)
— kextlog=VALUE (kernel extension loading debug mask)
— nv_disable=1 (disables NVIDIA GPU acceleration)
— nvda_drv=1 (legacy way to enable NVIDIA web driver, removed in 10.12)
— npci=0x2000 (legacy, disables kIOPCIConfiguratorPFM64)
— lapic_dont_panic=1
— slide=VALUE (manually set KASLR slide)
— smcdebug=VALUE (AppleSMC debug mask)
— -amd_no_dgpu_accel (alternative to WhateverGreen’s -radvesa for new GPUs)
— -nehalem_error_disable
— -no_compat_check (disable model checking)
— -s (single mode)
— -v (verbose mode)
— -x (safe mode)
There are multiple external places summarising macOS argument lists: example 1], lexample 2.
e 7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg

37

https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/AppleKeyboardLayouts
https://opensource.apple.com/source/IOFireWireFamily/IOFireWireFamily-473/IOFireWireFamily.kmodproj/IOFireWireController.cpp.auto.html
https://github.com/acpica/acpica/blob/master/source/include/acoutput.h
https://www.insanelymac.com/forum/topic/260539-1068-officially-released/?do=findComment&comment=1707972
https://github.com/acidanthera/WhateverGreen
https://osxeon.wordpress.com/2015/08/10/boot-argument-options-in-os-x
https://superuser.com/questions/255176/is-there-a-list-of-available-boot-args-for-darwin-os-x

Booter arguments, similar to boot-args but for boot.efi. Accepts a set of arguments, which are hexadeci-

mal 64-bit values Wlth or Wlthout Q%pfeﬁ%pﬂﬁﬂﬂh%%%ggmgeeﬁﬁe%%mw
request _different debu lo modes (e.g. after ExitBootServices it will only print to serial). Several
W%MMW

— 0x00 — INIT.

— 0x01 —_ VERBOSE (e.g. v, force console logging).

~ 0x02 ~ EXIT._

~ 0x03 ~ RESET:OK.

— 0x04 _RESET:FAIL (e.g. unknown board-id, hibernate mismatch, panic loop, etc.).

~ 0x05 ~ RESET:RECOVERY. _

— 0x06 — RECOVERY..

— 0x07 — REAN:START.

~ 0x08 ~ REAN:END,

— 0x09 - DT (can no longer log to DeviceTree).

— Ox0A _EXITBS:START (forced serial only).

— 0xOB — EXITBS:END (forced serial only).

~ 0%0C — UNKNOWN.
In 10.15 debugging support was mostly broken before 10.15.4 due to some kind of refactoring and introduction
of a mew debug protocol. Some of the arguments and their values below may not be valid for versions prior to
10.15.4. The list of known arguments is covered below:

— boot-save-1log=VALUE —_ debug log save mode for normal boot..

*

W IIN I O

N
| \
@ Q.
g &
5 b
D

* % ¥ X

- wakt;save—lo =VALUE — debug log save mode for hibernation wake.
0 disabled.

EE SR

| ¢l
=
RN
SRS
= (e
© $
o
o

2
3 i -
4 __(save to file, unavailable).
— breakpoint=VALUE — enables debug breaks (missing in production boot.efi).
* 0 — disables debug breaks on errors (default).
* 1 — cnables debug breaks on errors,
— console=VALUE __ enables console logging.
* 0 — disables console logging.
* 1 enables console logging when debug protocol is missing (default).
* 2 — enables console logging unconditionally (unavailable).
— embed-log-dt=VALUE —_ enables DeviceTree logging,
* 0 disables DeviceTree logging (default).
* 1 enables DeviceTree logging.
— kerread-size=VALUE — Chunk size used for buffered 1/O from network or disk for prelinkedkernel reading
and related. Set to IMB (0x100000) by default, can be tuned for faster booting,
— log-level=VALUE —_ log level bitmask.
* 0x01 __ enables trace logging (default).
— serial=VALUE — enables serial logging.
* 0 disables serial logging (default).
* 1 — enables serial logging for EXTTBS:END onwards.
1 enables serial logging for EXITBS: START onwards.
* 3 —_cnables serial logging when debug protocol is missing.
* 4 enables serial logging unconditionally.
— timestamps=VALUE — enables timestamp logging.
* 0 disables timestamp logging.
* 1 — enables timestamp logging (default).

— log=VALUE — deprecated starting from 10.15.
*x 1 — AppleLoggingConOutOrErrSet /AppleLoggingConOutOrErrPrint (classical ConOut/StdErr)

*

38

https://github.com/acidanthera/EfiPkg/blob/master/Include/Protocol/AppleDebugLog.h

* 2 — AppleLoggingStdErrSet/AppleLoggingStdErrPrint (StdErr or serial?)

* 4 — AppleLoggingFileSet/AppleLoggingFilePrint (BOOTER.LOG/BOOTER.OLD file on EFI partition)
— debug=VALUE __ deprecated starting from 10.15.

* 1 — enables print something to BOOTER.LOG (stripped code implies there may be a crash)

* 2 — enables perf logging to /efi/debug-log in the device three

x 4 — enables timestamp printing for styled printf calls
— level=VALUE — deprecated starting from 10.15. Verbosity level of DEBUG output. Everything but

0x80000000 is stripped from the binary, and this is the default value.

Note: To quickly see verbose output from boot.efi on versions before 10.15 set bootercfg to log=1.
7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg-once

Booter arguments override removed after first launch. Otherwise equivalent to bootercfg.
7C436110-AB2A-4BBB-A880-FE41995C9F82 : fmm-computer-name

Current saved host name. ASCII string.

7C436110-AB2A-4BBB-A880-FE41995C9F82:nvda_drv

NVIDIA Web Driver control variable. Takes ASCII digit 1 or 0 to enable or disable installed driver.

7C436110-AB2A-4BBB-A880-FE41995COF82: Startuplute

Mute startup chime sound in firmware audio support. 8-bit integer. The value of 0x00 means unmuted. Missing
variable or any other value means muted. This variable only affects Gibraltar machines (T2).
7C436110-AB2A-4BBB-A880-FE41995COF82 : SystemAudioVolume

System audio volume level for firmware audio support. 8-bit integer. The bit of 0x80 means muted. Lower bits are
used to encode volume range specific to installed audio codec. The value is capped by MaximumBootBeepVolume
AppleHDA layout value to avoid too loud audio playback in the firmware.

39

10.

11.

BIOSReleaseDate

Type: plist string

Failsafe: OEM specified

SMBIOS: BIOS Information (Type 0) — BIOS Release Date

Description: Firmware release date. Similar to BIOSVersion. May look like 12/08/2017.

SystemManufacturer

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — Manufacturer

Description: OEM manufacturer of the particular board. Shall not be specified unless strictly required. Should
not contain Apple Inc., as this confuses numerous services present in the operating system, such as firmware
updates, eficheck, as well as kernel extensions developed in Acidanthera, such as Lilu and its plugins. In addition
it will also make some operating systems like Linux unbootable.

SystemProductName

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1), Product Name

Description: Preferred Mac model used to mark the device as supported by the operating system. This value
must be specified by any configuration for later automatic generation of the related values in this and other
SMBIOS tables and related configuration parameters. If SystemProductName is not compatible with the target
operating system, -no_compat_check boot argument may be used as an override.

Note: If SystemProductName is unknown, and related fields are unspecified, default values should be assumed as
being set to MacPro6,1 data. The list of known products can be found in MacInfoPkg.

SystemVersion

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — Version

Description: Product iteration version number. May look like 1.1.

SystemSerialNumber

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — Serial Number

Description: Product serial number in defined format. Known formats are described in macserial.

SystemUUID

Type: plist string, GUID

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — UUID

Description: A UUID is an identifier that is designed to be unique across both time and space. It requires no
central registration process.

SystemSKUNumber

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — SKU Number

Description: Mac Board ID (board-id). May look like Mac-7BA5SB2D9E42DDD94 or Mac-F221BEC8 in older
models. Sometimes it can be just empty.

SystemFamily

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — Family
Description: Family name. May look like iMac Pro.

BoardManufacturer
Type: plist string
Failsafe: OEM specified

45

https://github.com/acidanthera/MacInfoPkg/blob/master/macserial/FORMAT.md

11 UEFI

11.1 Introduction

UEFT (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating
system and platform firmware. This section allows to load additional UEFI modules and/or apply tweaks for the onboard
firmware. To inspect firmware contents, apply modifications and perform upgrades UEFITooll and supplementary
utilities can be used.

11.2 Properties

L. Audio
Type: plist dict

Description: Configure audio backend support described in [Audio Properties|section below.

Audio support provides a way for upstream protocols to interact with the selected hardware and audio resources.
All audio resources should reside in \EFT\OC\Resources\Audio directory. Currently the only supported audio
file format is WAVE PCM. While it is driver-dependent which audio stream format is supported, most common
audio cards support 16-bit signed stereo audio at 44100 or 48000 Hz.

Audio file path is determined by audio type, audio localisation, and audio path. Each filename looks as follows:
laudio typel [audio localisation] [audio path].wav. For unlocalised files filename does not include the
language code and looks as follows: [audio typel_[audio path].wav.

¢ Audio type can be 0CEFIAudio for OpenCore audio files or AXEFIAudio for macOS bootloader audio files.

e Audio localisation is a two letter language code (e.g. en) with an exception for Chinese, Spanish, and

Portuguese. Refer to APPLE_VOICE_OVER_LANGUAGE_CODE definition for the list of all supported localisations.

« Audio path is the base filename corresponding to a file identifier. For macOS bootloader audio paths refer to
APPLE_VOICE_OVER_AUDIO_FILE definition. For OpenCore audio paths refer to/0C_VOICE_OVER_AUDIO_FILE

definition. The only exception is OpenCore boot chime file, which is 0CEFIAudio VoiceOver_Boot.wav.

Audio localisation is determined separately for macOS bootloader and OpenCore. For macOS bootloader it is
set in preferences.efires archive in systemLanguage .utf8 file and is controlled by the operating system. For
OpenCore the value of prev-lang:kbd variable is used. When native audio localisation of a particular file is
missing, English language (en) localisation is used. Sample audio files can be found in OcBinaryData repository.

2. ConnectDrivers
Type: plist boolean
Failsafe: false
Description: Perform UEFI controller connection after driver loading.

This option is useful for loading files: i i F drivers following UEFI driver model —ané
as they may not start by themselves Exam les of such drlvers are filesystem or audio drivers. While effective,
this option may not be necessary for drivers performing automatic connection, and may slightly slowdown the
boot.

Note: Some firmwares, made by Apple in particular, only connect the boot drive to speedup the boot process.
Enable this option to be able to see all the boot options when having multiple drives.

3. Drivers
Type: plist array
Failsafe: None
Description: Load selected drivers from 0C/Drivers directory.

Designed to be filled with string filenames meant to be loaded as UEFT drivers. Depending on the firmware a
different set of drivers may be required. Loading an incompatible driver may lead your system to unbootable
state or even cause permanent firmware damage. Some of the known drivers include:

e lApfsDriverLoader|— APFS file system bootstrap driver adding the support of embedded APFS drivers in
bootable APFS containers in UEFI firmwares.

48

https://uefi.org/specifications
https://github.com/LongSoft/UEFITool/releases
https://github.com/acidanthera/EfiPkg/blob/master/Include/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/EfiPkg/blob/master/Include/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Protocol/OcAudio.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Protocol/OcAudio.h
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/AppleSupportPkg

* /AudioDxe| — HDA audio support driver in UEFT firmwares for most Intel and some other analog audio
controllers. Refer to lacidanthera/bugtracker#740 for known issues in AudioDxe.

* ExFatDxe __ Proprictary ExFAT file system driver for Bootcamp support commonly found in Apple
firmwares. For Sandy Bridge and earlier CPUs ExFatDxelegacy driver should be used due to the lack

of RDRAND instruction support.
o FwRuntimeServices| — OC_FIRMWARE_RUNTIME protocol implementation that increases the security of

GpeﬁGefeiQfg@AnAQQgeNand Lilu by supporting read-only and write-only NVRAM variables. Some ¢uirks;tike
commonly used quirks, e.g. RequestBootVarRouting, require this driver for proper function. Due to the
nature of being a runtime driver, i.e. functioning in parallel with the target operating system, it cannot be
implemented within OpenCore itself, but is bundled with OpenCore releases.

» HfsPlus|_ Proprietary HFS file system driver with bless support commonly found in Apple firmwares. For
Sandy Bridge and earlier CPUs HfsPlusLegacy driver should be used due to the lack of RDRAND instruction
support.

+ HiiDatabase __ HII services support driver from MdeModulePkg, This driver is included in most firmwares
starting with Ivy Bridge generation. Some applications with the GUI like UEFT Shell may need this driver

to work properly.
¢ [EnhancedFatDxe| — FAT filesystem driver from FatPkg. This driver is embedded in all UEFI firmwares,

and cannot be used from OpenCore. It is known that multiple firmwares have a bug in their FAT support
implementation, which leads to corrupted filesystems on write attempt. Embedding this driver within the
firmware may be required in case writing to EFI partition is needed during the boot process.

e NvmExpressDxe — NVMe support driver from MdeModulePkg. This driver is included in most firmwares
starting with Broadwell generation. For Haswell and earlier embedding it within the firmware may be more
favourable in case a NVMe SSD drive is installed.

e |AppleUsbKbDxe — USB keyboard driver adding the support of AppleKeyMapAggregator protocols on top
of a custom USB keyboard driver implementation. This is an alternative to builtin KeySupport, which may
work better or worse depending on the firmware.

e [VBoxHfs| — HFS file system driver with bless support. This driver is an alternative to a closed source
HESPIusHfsPlus driver commonly found in Apple firmwares. While it is feature complete, it is approximately
3 times slower and is yet to undergo a security audit.

e XhciDxe| — XHCI USB controller support driver from MdeModulePkg. This driver is included in most
firmwares starting with Sandy Bridge generation. For earlier firmwares or legacy systems it may be used to
support external USB 3.0 PCI cards.

To compile the drivers from UDK (EDK II) use the same command you do normally use for OpenCore compilation,
but choose a corresponding package:

git clone https://github.com/acidanthera/audk UDK

cd UDK

source edksetup.sh

make -C BaseTools

build -a X64 -b RELEASE -t XCODE5 -p FatPkg/FatPkg.dsc

build -a X64 -b RELEASE -t XCODE5 -p MdeModulePkg/MdeModulePkg.dsc

4. Input
Type: plist dict
Failsafe: None
Description: Apply individual settings designed for input (keyboard and mouse) in [[nput Properties| section
below.

5. Qutput
Type: plist dict

Description: Apply individual settings designed for output (text and graphics) in [Output Properties| section

below.

6. Protocols
Type: plist dict
Failsafe: None
Description: Force builtin versions of select protocols described in [Protocols Properties| section below.

49

https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/bugtracker/issues/740
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/audk

7.

11.3
1.

4.

Note: all protocol instances are installed prior to driver loading.

Quirks

Type: plist dict

Failsafe: None

Description: Apply individual firmware quirks described in [Quirks Properties| section below.

Audio Properties
AudioCodec.

Failsafe: empty strin
Description: Codec address on the specified audio controller for audio support.

Normally this contains first audio codec address on the builtin analog audio controller (HDEF). Audio codec
addresses, e.g. 2, can be found in the debug log (marked in bold):

OCAU: 1/3 PciRoot (0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
0CAU: 2/3 PciRoot (0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
0CAU: 3/3 PciRoot (0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

As_an alternative this value can be obtained from IOHDACodecDevice class in I/O Registry containing it in
IOHDACodecAddress field.

- AudioDevice

Description: Device path of the specified audio controller for audio support.
Normally this contains builtin analog audio controller (HDEF) device path, e.g. PciRoot (0x0)/Pci(0x1b,0x0).

The list of recognised audio controllers can be found in the debug log (marked in bold):

0CAU: 1/3 PciRoot (0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
0CAU: 2/3 PciRoot (0x0)/Pci(0x3,0x0)/VenMsg (<redacted>,00000000) (1 outputs)
0CAU: 3/3 PciRoot (0x0)/Pci(0x1B,0x0)/VenMsg (<redacted>,02000000) (7 outputs)

As an alternative gfxutil -f HDEF command can be used in macOS. Specifying empty device path will result
in the first available audio controller to be used.

AudioOut

Description: Index of the output port of the specified codec starting from 0.

Normally this contains the index of the green out of the builtin analog audio controller (HDEF). The number of
output nodes (N) in the debug log (marked in bold):

0CAU: 1/3 PciRoot (0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
0CAU: 2/3 PciRoot (0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
0CAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

The quickest way to find the right port is to bruteforce the values from 0 to N - 1.

AudioSupport

Type: plist boolean

Description: Activate audio support by connecting to a backend driver.

Enabling this setting routes audio playback from builtin protocols to a dedicated audio port (AudioOut) of the
specified codec (AudioCodec) located on the audio controller (AudioDevice).

MinimumVolume

Description: Minimal heard volume level from 0 to 100.

50

Screen reader will use this volume level, when the calculated volume level is less than MinimumVolume. Boot

chime sound will not play if the calculated volume level is less than MinimumVolume.

6. PlayChime
Type: plist boolean

Description: Play chime sound at startup.

Enabling this setting plays boot chime through builtin audio support. Volume level is determined by MinimumVolume
and VolumeAmplifier settings and SystemAudioVolume NVRAM variable.

Note: this setting is separate from StartupMute NVRAM variable to avoid conflicts when the firmware is able
to play boot chime.

7. VolumeAmplifier

Description: Multiplication coefficient for system volume to raw volume linear translation from 0 to 1000.

Volume level range read from SystemAudioVolume varies depending on the codec. To transform read value in
[0, 127] range into raw volume range [0, 100] the read value is scaled to VolumeAmplifier percents:

SystemAudioV olume x Volume Ampli fier

RawV olume= MIN(100

,100)

Note: the transformation used in macOS is not linear, but it is very close and this nuance is thus ignored.

11.4 Input Properties

1. KeyForgetThreshold
Type: plist integer
Failsafe: 0
Description: Remove key unless it was submitted during this timeout in milliseconds.

AppleKeyMapAggregator protocol is supposed to contain a fixed length buffer of currently pressed keys. However,
the majority of the drivers only report key presses as interrupts and pressing and holding the key on the keyboard
results in subsequent submissions of this key with some defined time interval. As a result we use a timeout to
remove once pressed keys from the buffer once the timeout expires and no new submission of this key happened.

This option allows to set this timeout based on your platform. The recommended value that works on the majority
of the platforms is 5 milliseconds. For reference, holding one key on VMware will repeat it roughly every 2
milliseconds and the same value for APTIO V is 3-4 milliseconds. Thus it is possible to set a slightly lower value
on faster platforms and slightly higher value on slower platforms for more responsive input.

2. KeyMergeThreshold
Type: plist integer
Failsafe: 0
Description: Assume simultaneous combination for keys submitted within this timeout in milliseconds.

Similarly to KeyForgetThreshold, this option works around the sequential nature of key submission. To be able
to recognise simultaneously pressed keys in the situation when all keys arrive sequentially, we are required to set
a timeout within which we assume the keys were pressed together.

Holding multiple keys results in reports every 2 and 1 milliseconds for VMware and APTIO V respectively.
Pressing keys one after the other results in delays of at least 6 and 10 milliseconds for the same platforms. The
recommended value for this option is 2 milliseconds, but it may be decreased for faster platforms and increased
for slower.

3. KeySupport
Type: plist boolean
Failsafe: false
Description: Enable internal keyboard input translation to AppleKeyMapAggregator protocol.

o1

This option activates the internal keyboard interceptor driver, based on AppleGenericInput aka (AptioInputFix),
to fill AppleKeyMapAggregator database for input functioning. In case a separate driver is used, such as
AppleUsbKbDxe, this option should never be enabled.

4. KeySupportMode
Type: plist string
Failsafe: empty string
Description: Set internal keyboard input translation to AppleKeyMapAggregator protocol mode.

e Auto — Performs automatic choice as available with the following preference: AMI, V2, V1.
e V1 — Uses UEFT standard legacy input protocol EFI_SIMPLE_TEXT_INPUT_PROTOCOL.

e V2 — Uses UEFI standard modern input protocol EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.
e AMI — Uses APTIO input protocol AMI_EFIKEYCODE_PROTOCOL.

5. KeySwap
Type: plist boolean
Failsafe: false
Description: Swap Command and Option keys during submission.

This option may be useful for keyboard layouts with Option key situated to the right of Command key.

6. PointerSupport
Type: plist boolean
Failsafe: false
Description: Enable internal pointer driver.

This option implements standard UEFT pointer protocol (EFI_SIMPLE_POINTER_PROTOCOL) through select OEM
protocols. The option may be useful on Z87 ASUS boards, where EFI_SIMPLE_POINTER_PROTOCOL is broken.

7. PointerSupportMode
Type: plist string
Failsafe: empty string
Description: Set OEM protocol used for internal pointer driver.

Currently the only supported variant is ASUS, using specialised protocol available on select Z87 and Z97 ASUS
boards. More details can be found in LongSoft/UefiTool#116.

8. TimerResolution
Type: plist integer
Failsafe: 0
Description: Set architecture timer resolution.

This option allows to update firmware architecture timer period with the specified value in 100 nanosecond units.
Setting a lower value generally improves performance and responsiveness of the interface and input handling.

The recommended value is 50000 (5 milliseconds) or slightly higher. Select ASUS Z87 boards use 60000 for the
interface. Apple boards use 100000. You may leave it as 0 in case there are issues.

11.5 Output Properties
1. TextRenderer

Failsafe: BuiltinGraphics
Description: Chooses renderer for text going through standard console output.

Currently two renderers are supported: Builtin and System. System renderer uses firmware services for text
rendering. Builtin bypassing firmware services and performs text rendering on its own. Different renderers

support a different set of options. It is recommended to use Builtin renderer, as it supports HiDPI mode and
uses full screen resolution.

UEFI firmwares generally support ConsoleControl with two rendering modes: Graphics and Text. Some
firmwares do not support ConsoleControl and rendering modes. OpenCore and macOS expect text to only be

shown in Graphics mode and graphics to be drawn in any mode. Since this is not required by UEFI specification,
exact behaviour varies.

52

https://github.com/LongSoft/UEFITool/pull/116

Valid values are combinations of text renderer and rendering mode:

* BuiltinGraphics —— Switch to Graphics mode and use Builtin renderer with custom ConsoleControl.

* SystemGraphics — Switch to Graphics mode and use System renderer with custom ConsoleControl.
e SystemText — Switch to Text mode and use System renderer with custom ConsoleControl.
o SystemGeneric — Use System renderer with system ConsoleControl assuming it behaves correctly.

The use of BuiltinGraphics is generally straightforward. For most platforms it is necessary to enable ProvideConsoleGo

The use of System protocols is more complicated. In general the preferred setting is SystemGraphics or
SystemText. Enabling ProvideConsoleGop, setting Resolution to Max, enabling ReplaceTablWithSpace is
useful on almost all platforms. SanitiseClearScreen, IgnoreTextInGraphics; and ClearScreenOnModeSwitch
are more specific, and their use depends on the firmware.

Note: Some Macs, namely MacPro5,1, may have broken console output with newer GPUs, and thus onl
BuiltinGraphics may work for them.

2. ConsoleMode

Type: plist strin

Failsafe: Empty strin
Description: Sets console output mode as specified with the WxH (e.g.

Set to empty string not to change console mode. Set to Max to try to use largest available console mode. Currentl
Builtin text renderer supports only one console mode, so this option is ignored.

Note: This field is best to be left empty on most firmwares.
3. Resolution

Failsafe: Empty strin
Description: Sets console output screen resolution.

e Set to WxHEB e.g. 1920x1080032) or WxH (e.g. 1920x1080) formatted string to request custom resolution

e Set to empty string not to change screen resolution.
e Set to Max to try to use largest available screen resolution.

On HiDPI screens APPLE_VENDOR, VARTABLE_GUID UIScale NVRAM variable may need o be set to 02 to enable

HiDPI scaling in Builtin text renderer, FileVault 2 UEFI password interface, and boot screen logo. Refer to
Recommended Variables section for more details.

Note: This will fail when console handle has no GOP protocol. When the firmware does not provide it, it can
be added with ProvideConsoleGop set to true.

4. ClearScreenOnModeSwitch

Type: plist boolean

Description: Some firmwares clear only part of screen when switching from graphics to text mode, leaving a
fragment of previously drawn image visible. This option fills the entire graphics screen with black color before
switching to text mode.

Note: This option only applies to System renderer.

5. DirectGopRenderin

Type: plist boolean

Description: Use builtin graphics output protocol renderer for console.

On some firmwares this may provide better performance or even fix rendering issues, like on MacPro5, 1. However
it is recommended not to use this option unless there is an obvious benefit as it may even result in slower scrolling.

6. IgnoreTextInGraphics
Type: plist boolean

53

Description: Select firmwares output text onscreen in both graphics and text mode. This is normally unexpected,
because random text may appear over graphical images and cause Ul corruption. Setting this option to true
will discard all text output when console control is in mode different from Text.

Note: This option only applies to System renderer.

7. ReplaceTabWithSpace
Type: plist boolean
Description: Some firmwares do not print_tab characters or even everything that follows them, causing
difficulties or inability to_use the UEFI Shell builtin_text editor to edit property lists and other documents.
This option makes the console output spaces instead of tabs.

Note: This option only applies to System renderer.

8. ProvideConsoleGo

Type: plist boolean

Description: Ensure GOP (Graphics Output Protocol) on console handle.

macOS bootloader requires GOP to be present on console handle, yet the exact location of GOP is not covered
by the UEFI specification. This option will ensure GOP is installed on console handle if it is present.

Note: This option will also replace broken GOP protocol on console handle, which may be the case on MacPro5,1
with newer GPUs.

9. ReconnectOnResChange
Type: plist boolean

Description: Reconnect console controllers after changing screen resolution.

On some firmwares when screen resolution is changed via GOP, it is required to reconnect the controllers, which
roduce the console protocols (simple text out). Otherwise they will not produce text based on the new resolution.

Note: On several boards this logic may result in black screen when launching OpenCore from Shell and thus it
is optional. In versions prior to 0.5.2 this option was mandatory and not configurable. Please do not use this
unless required.

10. SanitiseClearScreen

Type: plist boolean

Description: Some firmwares reset screen resolution to a failsafe value (like 1024x768) on the attempts to clear

screen contents when large display (e.g. 2K or 4K) is used. This option attempts to apply a workaround.

Note: This option only applies to System renderer. On all known affected systems ConsoleMode had to be set
to empty string for this to work.

11.6 Protocols Properties

1. AppleAudio
Type: plist boolean

Description: Reinstalls Apple audio protocols with builtin versions.

Apple audio protocols allow macOS bootloader and OpenCore to play sounds and signals for screen reading or

audible error reporting. Supported protocols are beep generation and VoiceOver. VoiceOver protocol is specific
to Gibraltar machines (T2) and is not supported before macOS High Sierra (10.13). Instead older macOS versions

use AppleHDA protocol, which is currently not implemented.

Only one set of audio protocols can be available at a time, so in order to get audio playback in OpenCore user
interface on Mac system implementing some of these protocols this setting should be enabled.

54

10.

11.

Note: Backend audio driver needs to be configured in UEFI Audio section for these protocols to be able to stream
audio.

AppleBootPolicy

Type: plist boolean

Failsafe: false

Description: Reinstalls Apple Boot Policy protocol with a builtin version. This may be used to ensure APFS
compatibility on VMs or legacy Macs.

Note: Some Macs, namely MacPro5,1, do have APFS compatibility, but their Apple Boot Policy protocol contains
recovery detection issues, thus using this option is advised on them as well.

AppleEvent

Type: plist boolean

Failsafe: false

Description: Reinstalls Apple Event protocol with a builtin version. This may be used to ensure File Vault 2
compatibility on VMs or legacy Macs.

. AppleImageConversion

Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Image Conversion protocol with a builtin version.

AppleKeyMap

Type: plist boolean

Failsafe: false

Description: Reinstalls Apple Key Map protocols with builtin versions.

AppleSmcIo

Type: plist boolean

Failsafe: false

Description: Reinstalls Apple SMC I/O protocol with a builtin version.

This protocol replaces legacy VirtualSmc UEFI driver, and is compatible with any SMC kernel extension.
However, in case FakeSMC kernel extension is used, manual NVRAM key variable addition may be needed.

AppleUserInterfaceTheme

Type: plist boolean

Failsafe: false

Description: Reinstalls Apple User Interface Theme protocol with a builtin version.

DataHub

Type: plist boolean

Failsafe: false

Description: Reinstalls Data Hub protocol with a builtin version. This will drop all previous properties if the
protocol was already installed.

DeviceProperties

Type: plist boolean

Failsafe: false

Description: Reinstalls Device Property protocol with a builtin version. This will drop all previous properties if
it was already installed. This may be used to ensure full compatibility on VMs or legacy Macs.

FirmwareVolume
Type: plist boolean
Failsafe: false

55

12.

13.

14.

Description: Forcibly wraps Firmware Volume protocols or installs new to support custom cursor images for
File Vault 2. Should be set to true to ensure File Vault 2 compatibility on everything but VMs and legacy Macs.

Note: Several virtual machines including VMware may have corrupted cursor image in HiDPI mode and thus
may also require this setting to be enabled.

HashServices

Type: plist boolean

Failsafe: false

Description: Forcibly reinstalls Hash Services protocols with builtin versions. Should be set to true to ensure
File Vault 2 compatibility on platforms providing broken SHA-1 hashing. Can be diagnosed by invalid cursor size
with UIScale set to 02, in general platforms prior to APTIO V (Haswell and older) are affected.

0SInfo

Type: plist boolean

Failsafe: false

Description: Forcibly reinstalls OS Info protocol with builtin versions. This protocol is generally used to receive
notifications from macOS bootloader, by the firmware or by other applications.

UnicodeCollation

Type: plist boolean

Failsafe: false

Description: Forcibly reinstalls unicode collation services with builtin version. Should be set to true to ensure
UEFT Shell compatibility on platforms providing broken unicode collation. In general legacy Insyde and APTIO
platforms on Ivy Bridge and earlier are affected.

11.7 Quirks Properties
1. i

A +ohA

ExitBootServicesDelay

Type: plist integer

Failsafe: 0

Description: Adds delay in microseconds after EXIT_BOOT_SERVICES event.

This is a very ugly quirk to circumvent "Still waiting for root device" message on select APTIO IV firmwares,
namely ASUS Z87-Pro, when using FileVault 2 in particular. It seems that for some reason they execute code
in parallel to EXIT_BOOT_SERVICES, which results in SATA controller being inaccessible from macOS. A better
approach should be found in some future. Expect 3-5 seconds to be enough in case the quirk is needed.

IgnoreInvalidFlexRatio

Type: plist boolean

Failsafe: false

Description: Select firmwares, namely APTIO IV, may contain invalid values in MSR_FLEX_RATIO (0x194) MSR
register. These values may cause macOS boot failure on Intel platforms.

Note: While the option is not supposed to induce harm on unaffected firmwares, its usage is not recommended
when it is not required.

56

10.

ReleaseUsbOwnership

Type: plist boolean

Failsafe: false

Description: Attempt to detach USB controller ownership from the firmware driver. While most firmwares
manage to properly do that, or at least have an option for, select firmwares do not. As a result, operating system
may freeze upon boot. Not recommended unless required.

RequestBootVarFallback

Type: plist boolean

Failsafe: false

Description: Request fallback of some Boot prefixed variables from 0C_VENDOR_VARIABLE_GUID to
EFI_GLOBAL_VARIABLE_GUID.

This quirk requires RequestBootVarRouting to be enabled and therefore 0C_FIRMWARE_RUNTIME protocol imple-
mented in FwRuntimeServices.efi.

By redirecting Boot prefixed variables to a separate GUID namespace we achieve multiple goals:

e Operating systems are jailed and only controlled by OpenCore boot environment to enhance security.

e Operating systems do not mess with OpenCore boot priority, and guarantee fluent updates and hibernation
wakes for cases that require reboots with OpenCore in the middle.

o Potentially incompatible boot entries, such as macOS entries, are not deleted or anyhow corrupted.

However, some firmwares do their own boot option scanning upon startup by checking file presence on the
available disks. Quite often this scanning includes non-standard locations, such as Windows Bootloader paths.
Normally it is not an issue, but some firmwares, ASUS firmwares on APTIO V in particular, have bugs. For them
scanning is implemented improperly, and firmware preferences may get accidentally corrupted due to BootOrder
entry duplication (each option will be added twice) making it impossible to boot without cleaning NVRAM.

To trigger the bug one should have some valid boot options (e.g. OpenCore) and then install Windows with
RequestBootVarRouting enabled. As Windows bootloader option will not be created by Windows installer, the

57

11.

firmware will attempt to create it itself, and then corrupt its boot option list.

This quirk forwards all UEFI specification valid boot options, that are not related to macOS, to the firmware into
BootF### and BootOrder variables upon write. As the entries are added to the end of BootOrder, this does not
break boot priority, but ensures that the firmware does not try to append a new option on its own after Windows
installation for instance.

RequestBootVarRouting

Type: plist boolean

Failsafe: false

Description: Request redirect of all Boot prefixed variables from EFI_GLOBAL_VARIABLE_GUID to
OC_VENDOR_VARIABLE_GUID.

This quirk requires OC_FIRMWARE_RUNTIME protocol implemented in FwRuntimeServices.efi. The quirk lets
default boot entry preservation at times when firmwares delete incompatible boot entries. Simply said, you are
required to enable this quirk to be able to reliably use [Startup Disk preference pane in a firmware that is not
compatible with macOS boot entries by design.

13.

UnblockFsConnect

Type: plist boolean

Failsafe: false

Description: Some firmwares block partition handles by opening them in By Driver mode, which results in File
System protocols being unable to install.

Note: The quirk is mostly relevant for select HP laptops with no drives listed.

58

https://support.apple.com/HT202796

12 Troubleshooting

12.1 Windows support
Can I install Windows?

While no official Windows support is provided, 64-bit UEFI Windows installations (Windows 8 and above) prepared
with Boot Camp are supposed to work. Third-party UEFT installations as well as systems partially supporting UEFI
boot, like Windows 7, might work with some extra precautions. Things to keep in mind:

o MBR (Master Boot Record) installations are legacy and will not be supported.

e To install Windows, macOS, and OpenCore on the same drive you can specify Windows bootloader path
(\EFI\Microsoft\Boot\bootmgfw.efi) in BlessOverride section.

o All the modifications applied (to ACPI, NVRAM, SMBIOS, etc.) are supposed to be operating system agnostic,
i.e. apply equally regardless of the OS booted. This enables Boot Camp software experience on Windows.

e macOS requires the first partition to be EFI System Partition, and does not support the default Windows layout.
While OpenCore does have a workaround for this, it is highly recommend not to rely on it and install properly.

e Windows may need to be reactivated. To avoid it consider setting SystemUUID to the original firmware UUID.
Be warned, on old firmwares it may be invalid, i.e. not random. In case you still have issues, consider using
HWID or KMS38 license. The nuances of Windows activation are out of the scope of this document and can be
found online.

What additional software do I need?

To enable operating system switching and install relevant drivers in the majority of cases you will need Windows
support software from Boot Camp. For simplicity of the download process or when configuring an already installed
Windows version a third-party utility, Brigadier, can be used successfully. Note, that you may have to download and
install |[7-Zip| prior to using Brigadier.

Remember to always use the latest version of Windows support software from Boot Camp, as versions prior to 6.1 do
not support APFS, and thus will not function correctly. To download newest software pass most recent Mac model
to Brigadier, for example ./brigadier.exe -m iMac19,1. To install Boot Camp on an unsupported Mac model
afterwards run PowerShell as Administrator and enter msiexec /i BootCamp.msi. In case you already have a previous
version of Boot Camp installed you will have to remove it first by running msiexec /x BootCamp.msi command.
BootCamp.msi file is located in BootCamp/Drivers/Apple directory and can be reached through Windows Explorer.

While Windows support software from Boot Camp solves most of compatibility problems, sometimes you may have to
address some of them manually:

o To invert mouse wheel scroll direction F1ipFlopWheel must be set to 1 as explained on SuperUserl

e RealTimeIsUniversal must be set to 1 to avoid time desync between Windows and macOS as explained on
SuperUser| (this one is usually not needed).

e To access Apple filesystems like HFS and APFS separate software may need to be installed. Some of the known
tools are: |Apple HFS+ driver| (hack for Windows 10), HFSExplorer, MacDrive, Paragon APFS, Paragon HFS+,
TransMac, etc. Remember to never ever attempt to modify Apple file systems from Windows as this often leads
to irrecoverable data loss.

Why do I see Basic data partition in Boot Camp Startup Disk control panel?

Boot Camp control panel uses GPT partition table to obtain each boot option name. After installing Windows
separately you will have to relabel the partition manually. This can be done with many tools including open-source
gdisk| utility. Reference example:

PS C:\gdisk> .\gdisk64.exe \\.\physicaldriveO
GPT fdisk (gdisk) version 1.0.4

Command (7 for help): p

Disk \\.\physicaldriveO: 419430400 sectors, 200.0 GiB
Sector size (logical): 512 bytes

Disk identifier (GUID): DEC57EB1-B3B5-49B2-95F5-3B8C4D3E4E12

59

https://github.com/acidanthera/bugtracker/issues/327
https://support.apple.com/boot-camp
https://github.com/timsutton/brigadier
https://www.7-zip.org
https://superuser.com/a/364353
https://superuser.com/q/494432
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/post-24180079
http://www.catacombae.org/hfsexplorer
https://sourceforge.net/projects/gptfdisk

Partition table holds up to 128 entries

Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 419430366
Partitions will be aligned on 2048-sector boundaries

Total free space is 4029 sectors (2.0 MiB)

Number Start (sector) End (sector) Size Code Name
1 2048 1023999 499.0 MiB 2700 Basic data partition
2 1024000 1226751 99.0 MiB EFO0 EFI system partition
3 1226752 1259519 16.0 MiB 0CO1 Microsoft reserved ...
4 1259520 419428351 199.4 GiB 0700 Basic data partition

Command (7 for help): c
Partition number (1-4): 4
Enter name: BOOTCAMP

Command (7 for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING PARTITIONS!!
Do you want to proceed? (Y/N): Y

OK; writing new GUID partition table (GPT) to \\.\physicaldriveO.

Disk synchronization succeeded! The computer should now use the new partition table.
The operation has completed successfully.

Listing 3: Relabeling Windows volume

How to choose Windows BOOTCAMP with custom NTFS drivers?

Third-party drivers providing NTFS support, such as NTFS-3G, Paragon NTFS, Tuxera NTFS or |Seagate Paragon
Driver break certain macOS functionality, including Startup Disk preference pane normally used for operating system
selection. While the recommended option remains not to use such drivers as they commonly corrupt the filesystem, and
prefer the driver bundled with macOS with optional write support (command| or GUI), there still exist vendor-specific
workarounds for their products: Tuxera, |Paragon) etc.

12.2 Debugging

Similar to other projects working with hardware OpenCore supports auditing and debugging. The use of NOOPT or
DEBUG build modes instead of RELEASE can produce a lot more debug output. With NOOPT source level debugging with
GDB or IDA Pro is also available. For GDB check OcSupport Debug page. For IDA Pro you will need IDA Pro 7.3 or
newer, refer to Debugging the XNU Kernel with IDA Prol| for more details.

To obtain the log during boot you can make the use of serial port debugging. Serial port debugging is enabled in Target,
e.g. 0xB for onscreen with serial. OpenCore uses 115200 baud rate, 8 data bits, no parity, and 1 stop bit. For macOS
your best choice are CP2102-based UART devices. Connect motherboard TX to USB UART RX, and motherboard GND
to USB UART GND. Use screen utility to get the output, or download GUI software, such as |CoolTerml

Note: On several motherboards (and possibly USB UART dongles) PIN naming may be incorrect. It is very common
to have GND swapped with RX, thus you have to connect motherboard “TX” to USB UART GND, and motherboard “GND”
to USB UART RX.

Remember to enable COM port in firmware settings, and never use USB cables longer than 1 meter to avoid output
corruption. To additionally enable XNU kernel serial output you will need debug=0x8 boot argument.

12.3 Tips and Tricks
1. How to debug boot failure?

Normally it is enough to obtain the actual error message. For this ensure that:

e You have a DEBUG or NOOPT version of OpenCore.

60

https://www.tuxera.com/community/open-source-ntfs-3g
https://www.seagate.com/support/software/paragon
https://www.seagate.com/support/software/paragon
https://support.apple.com/HT202796
http://osxdaily.com/2013/10/02/enable-ntfs-write-support-mac-os-x
https://mounty.app
https://www.tuxera.com/products/tuxera-ntfs-for-mac/faq
https://kb.paragon-software.com/article/6604
https://github.com/acidanthera/OpenCorePkg/tree/master/Debug
https://www.hex-rays.com/products/ida/support/tutorials/index.shtml
https://freeware.the-meiers.org

o Logging is enabled (1) and shown onscreen (2): Misc — Debug — Target = 3.

o Logged messages from at least DEBUG_ERROR (0x80000000), DEBUG_WARN (0x00000002), and DEBUG_INFO
(0x00000040) levels are visible onscreen: Misc — Debug — DisplayLevel = 0x80000042.

o Critical error messages, like DEBUG_ERROR, stop booting: Misc — Security — HaltLevel = 0x80000000.

o Watch Dog is disabled to prevent automatic reboot: Misc — Debug — DisableWatchDog = true.

o Boot Picker (entry selector) is enabled: Misc — Boot — ShowPicker = true.

If there is no obvious error, check the available hacks in Quirks sections one by one. For early boot troubleshooting,
for instance, when OpenCore menu does not appear, using UEFI Shelll may help to see early debug messages.

. How to customise boot entries?

OpenCore follows standard Apple Bless model and extracts the entry name from .contentDetails and
.disk_label.contentDetails files in the booter directory if present. These files contain an ASCII string
with an entry title, which may then be customised by the user.

. How to choose the default boot entry?

OpenCore uses the primary UEFI boot option to select the default entry. This choice can be altered from UEFI
Setup, with the macOS Startup Disk| preference, or the Windows |Boot Camp Control Panel. Since choosing
OpenCore’s BOOTx64.EFI as a primary boot option limits this functionality in addition to several firmwares
deleting incompatible boot options, potentially including those created by macOS, you are strongly encouraged to
use the RequestBootVarRouting quirk, which will preserve your selection made in the operating system within
the OpenCore variable space. Note, that RequestBootVarRouting requires a separate driver for functioning.

. What is the simplest way to install macOS?

Copy online recovery image (*.dmg and *.chunklist files) to com.apple.recovery.boot directory on a FAT32
partition with OpenCore. Load OpenCore Boot Picker and choose the entry, it will have a (dmg) suffix. Custom
name may be created by providing .contentDetails file.

To download recovery online you may use macrecovery.py tool from MacInfoPkg,.

For offline installation refer to How to create a bootable installer for macOS article. Apart from App Store and
softwareupdate utility there also are third-party tools to download an offline image.

. Why do online recovery images (*.dmg) fail to load?

This may be caused by missing HFS+ driver, as all presently known recovery volumes have HFS+ filesystem-

BEHgnivk.

. Can I use this on Apple hardware or virtual machines?

Sure, most relatively modern Mac models including MacPro5,1 and virtual machines are fully supported. Even
though there are little to none specific details relevant to Mac hardware, some ongoing instructions can be found
in lacidanthera/bugtracker#377.

. Why do Find&Replace patches must equal in length?

For machine code (x86 code) it is not possible to do differently sized replacements due to relative addressing. For
ACPI code this is risky, and is technically equivalent to ACPI table replacement, thus not implemented. More
detailed explanation can be found on AppleLife.ru.

. How can I migrate from AptioMemoryFix?

Behaviour similar to that of AptioMemoryFix can be obtained by installing FwRuntimeServices driver and
enabling the quirks listed below. Please note, that most of these are not necessary to be enabled. Refer to their
individual descriptions in this document for more details.

e ProvideConsoleGop (UEFI quirk)
e AvoidRuntimeDefrag

e DiscardHibernateMap

¢ EnableSafeModeSlide

e EnableWriteUnprotector

e ForceExitBootServices

¢ ProtectCsmRegion

61

https://github.com/acidanthera/OpenCoreShell
https://support.apple.com/HT202796
https://support.apple.com/guide/bootcamp-control-panel/start-up-your-mac-in-windows-or-macos-bcmp29b8ac66/mac
https://github.com/acidanthera/MacInfoPkg/blob/master/macrecovery/macrecovery.py
https://github.com/acidanthera/MacInfoPkg/releases
https://support.apple.com/HT201372
https://github.com/corpnewt/gibMacOS
https://github.com/acidanthera/bugtracker/issues/377
https://en.wikipedia.org/w/index.php?title=Relative_addressing
https://applelife.ru/posts/819790

	Introduction
	Generic Terms

	Setup
	Directory Structure
	Installation and Upgrade
	Contribution
	Coding conventions

	Booter
	Introduction
	Properties
	MmioWhitelist Properties

	Misc
	Introduction
	Properties
	Boot Properties
	Debug Properties
	Entry Properties

	Other Variables
	UEFI
	Introduction
	Properties
	Audio Properties
	Input Properties
	Output Properties
	Protocols Properties
	Quirks Properties

	Troubleshooting
	Windows support
	Debugging
	Tips and Tricks

